
Int. J. Heat Mass Transfer. Vol. 18, pp. 1055-1069. Pergamon Press 1975. Printed in Great Britain 

THE PREDICTION OF TURBULENT PRANDTL AND 
SCHMIDT NUMBERS 

A. J. REYNOLDS 
Department of Mechanical Engineering, Brunel University, Uxbridge, Middlesex, England 

(Received 25 July 1974 and in revised form 10 December 1974) 

Abstract-This paper examines more than thirty ways of predicting the relationship between turbulent 
transfers ofmomentum and a passive contaminant such as heat or dissolved matter. The models are divided 
into seven classes, on the basis of method of derivation or field of application. Three classes comprise 
modifications of the simplest mixing-length model to allow for diffusion during the lateral motion of the 
fluid element which is conceived to carry the transferred entities. The other four classes are more hetero- 
geneous: formal analyses based on Reynolds equations; results derived from various expressions for the 
eddy diffusivities; several kinds of model applicable to wall layers in particular; and purely empirical 
formulae representing limited data. 

An attempt has been made to assess the utility and potential for development of these models, both from 
the practical point of view, that of devising accurate heat- and mass-transfer formulae, and from the 
fundamental point of view, that of gaining an understanding of the actual transferring mechanisms. There 
is a plethora of formulae that can, with suitable choices of empirical constants, represent the gross 
features of experimental data. However, only the formal analyses account in a consistent way for the 
pressure interactions which influence momentum transfer. At present, forma1 results are available only for 
the degenerate case of weak, decaying turbulence, although they do prove useful in suggesting the limiting 

behaviour to be expected in more general flows. 

NOMENCLATURE 

4 radius of spherical element of fluid; 
A+, empirical constant for wall layer; 
b, empirical constant; 

B+, empirical constant for wall-layer 
temperature field; 

c/3 friction coefficient; 

CP? constant-pressure thermal capacity; 
c constant-volume thermal capacity; 
&, to c,, empirical constants with differing 

values in various formulae; 
pipe diameter; 
molecular diffusivity of matter; 
fluctuation in specific internal energy; 
fluctuation in specific enthalpy; 
measure of intensity of turbulence; 
von K&rmBn’s constant; 
constant with role of K for temperattire field; 
effective diffusivity of heat; 
effective diffusivity of momentum; 
molecular diffusivity of a general property P; 

mixing length or distance travelled by fluid 
element ; 
damped mixing length for heat transfer; 
damped mixing length for momentum 
transfer; 
length scale for roller; 
Eulerian integral length scale; 
Lagrangian integral length scale; 
empirical value of exponent; 
empirical or predicted value of exponent, or 
integer in summations; 
Reynolds number characterizing larger 
scales of turbulence; 

Nu, 
P, 
p, 

p, 

R “8, 

s, 

SC, 

SC*, 

t, 

T, 
T E, 

T L.1 

T+, 

% 

UC 
u, 

UC 

u1, 

Nusselt number; 
pressure fluctuation; 
historical value of general property for 
moving element ; 
(time-) mean variation of general property 
for surroundings of moving element; 
P&let number; 
molecular Prandtl number; 
effective value of Prandtl number; 
turbulent Prandtl number; 
radius of pipe; 
Reynolds number; 
Eulerian correlation coefficient; 
Lagrangian correlation coefficient; 
correlation coefficient between velocity 
fluctuations; 
correlation coefficient between velocity and 
temperature fluctuations; 
strain parameter; 
molecular Schmidt number; 
turbulent Schmidt number; 
time; 
(time-) mean temperature; 
Eulerian integral time scale; 
Lagrangian integral time scale; 
mean temperature scaled using wall-layer 
parameters; 
velocity fluctuation in direction of mean 
flow; 
friction velocity, (7,/p)+; 
(time-) mean velocity or characteristic 
velocity of roller; 
mean or bulk velocity for pipe flow; 
free-stream velocity at edge of boundary 
layer; 
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u+ 

0, 

V’, 

v,, 

vd, 

Y, 

Yf 3 
Y+. 

mean velocity scaled using friction velocity, 
Ulu, ; 
velocity fluctuation, typically normal to 
mean flow and in direction of transfer; 
RMS intensity of velocity fluctuation or 
other characteristic value; 
effective convection velocity for energy; 
typical value of V, ; 
coordinate measured from and normal to 
wall ; 
wall-layer length scale, v/us; 
scaled coordinate, y/y,. 

Greek symbols 

diffusivity representing small-scale turbulent 
transfer of heat; 
boundary-layer thickness or spatial 
separation between correlated points; 
parameter characterizing transfer of heat 
from a moving element; 
parameter characterizing transfer of 
momentum from a moving element; 
parameter characterizing transfer of a 
general property P from a moving element; 
eddy diffusivity characteristic of gradient 
diffusion of energy: 
eddy diffusivity of heat; 
eddy diffusivity of momentum: eddy 
viscosity; 
eddy diffusivity for transfer normal to wall; 
eddy diffusivity for transfer tangential to 
wall; 
eddy diffusivity of matter; 
temperature fluctuation; 
typical value of temperature fluctuation for 
turbulent convection; 
molecular diffusivity of heat; 
microscale characterizing velocity 
fluctuations; 
microscale characterizing temperature 
fluctuations; 
molecular diffusivity of momentum : 
kinematic viscosity; 
diffusivity representing small-scale turbulent 
transfer of momentum; 
fluid density, taken to be essentially 
constant; 
time in correlation calculations; 
wall shear stress; 
distortion factor accounting for effect of 
“entity” shape on momentum transfer; 
distortion factor for heat transfer. 

1. INTRODUCTION 

IT IS a tribute to man’s ingenuity and individuality 
that more than thirty analytical models of turbulent 
transport processes have been devised within the last 
twenty-five years. It is the purpose of this paper to 
review this work, both to assist engineers faced with 
transfer calculations, and to provide future investi- 
gators with an understanding of current achievements. 

Studies of this problem are so numerous and so widely 
dispersed that one can hardly hope to have found every 
relevant example, but those that have been located 
should serve to indicate the main lines of development. 

Most analyses begin with calculations of the eddy 
diffusivities of momentum and heat or passively con- 
vected matter. From these can be calculated the turbu- 
lent Prandtl or Schmidt numbers, the ratios of the eddy 
diffusivity of momentum-the eddy viscosity-to those 
of enthalpy and mass : 

Pr, = cm/EL and SC, = E,/E,,. (1.1) 

These ratios parallel exactly the molecular Prandtl and 
Schmidt numbers: 

Pr = v/K and SC = v/D. (1.2) 

We shall fix our attention on the predictions of the 
eddy-diffusivity ratios (1.1) provided by the several 
models of turbulent transfer processes. In using these 
ratios as measures of performance, we are in one way 
asking little of an analytical model, and in another, 
demanding a great deal. We ask little in that the spatial 
variations of the individual diffusivities need not be 
predicted accurately. We demand a good deal by con- 
centrating on the model’s ability to distinguish between 
the transfers ofmomentum and of a convected property, 
that is, to predict departures of Pr, and SC, from unity. 

In fact, many of the Prandtl number formulae to be 
considered do involve a ratio of eddy and molecular 
diffusivities (E,,,/v or E&C). This is not a severe limitation, 
since the distribution of eddy viscosity is known with 
adequate precision for some often-studied flows; an 
example is the semi-empirical prediction of Travis et al. 
[l] for the case of fully developed pipe flow. Thus 
many analysts do not attempt to predict the eddy- 
viscosity variation within the flow, but adopt a semi- 
empirical expression for it at a convenient point in the 
analysis. 

We shall restrict attention to temperature and con- 
centration ranges that are sufficiently small to ensure 
that there is no significant interaction between the flow 
and the transfer of heat or mass within it; in particular, 
we shall neglect both buoyancy and the compressibility 
effects arising in high-speed gas flows. Accordingly, we 
assume an almost perfect analogy between heat and 
mass transfers, with the relationships Pr, =f(Pr) and 
SC, =f(Sc) having the same functional form. For gases 
this assumption is suspect, for the turbulent enthalpy 
flux which is usually taken as a measure of heat flux is 

i6 = *+$5/l) (1.3) 

where h and e are the enthalpy and internal-energy 
fluctuations, and v is the velocity fluctuation in the 
direction considered. Here the energy flux is separated 
into terms representing the passive convection of 
internal energy and a work interaction involving 
pressure and velocity. It is not plausible to assume that 
e and p are correlated with t’ in the same way. But 
when this assumption is made, the pressure-work term 
contributes the fraction (cp - c,)/c, to the enthalpy flux 
(cp and c, are specific heats). The difference between 
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actual and assumed enthalpy fluxes may be expected to 
be of the same order, negligible for liquids, but around 
one-third for gases. Even in the latter case, the difference 
between the transfer processes for enthalpy and for 
passively conveyed matter is hardly large enough to be 
detected within the usual experimental variability. 

1.1. Experimental evidence 

Detailed comparisons between experiment and 
analysis and between alternative analytical models will 
not be attempted in this paper. Most of the formulae 
to be considered incorporate constants, or even 
functions, that have been selected to make each formula 
conform with a limited body of data, and the difficulties 
of measurement are such that we are still comparing 
(sometimes, contrasting) results obtained by different 
experimenters. 

Some existing reviews of measured ratios Pr, and 
SC, are: for wall flows, Blom [2], Simpson et al. [3], 
Monin and Yaglom [4], and Eckert and Drake [5]; 
for core flows, Groenhoff [6] and Huetz [7]; and for 
free turbulence, Reynolds [8]. Without doubt there are 
differences in the ratios typical of these three classes of 
flow. Moreover, in each case there is evidence that the 
ratio depends on the corresponding molecular value, Pr 
or SC, on position within the flow, and on the local 
turbulenceintensity. The last two factors are sometimes 
represented by the single quantity a,,,/~ and sometimes 
by separate parameters, such as y/R and Re, = U, d/v. 
(Here pipe flow has been considered for definiteness, 
d = 2R being the diameter and U, the bulk velocity.) 

We can summarize these observations in a formula 
for Pr, which displays the trends most often found in 
measurements : 

Pr, = Cl exp[ -C,PF$&)n] (1.4) 

with Cr, C,, m and n positive constants. This proposal is 
consistent with an increase in Pr, as the wall is 
approached and E,/V falls; this trend seems, on balance, 
to be the more likely. Greater generality could be 
obtained by providing an explicit dependence on 
position, through a parameter such as y/R or y/yf 
(y, = v/u, is the wall-layer length scale, u/ being the 
friction velocity). The postulate (1.4) also demonstrates 
the widely observed, roughly reciprocal relationship 
between the molecular and turbulent diffusivity ratios : 

Pr, >< 1 for Pr 5 1 unless Pr - 1. (1.5) 

Within the wall layer there are large differences 

(E&” - 10) between the eddy diffusivities for transfers 
tangential to and normal to the wall. Here we shall 
concern ourselves only with the normal diffusivities; 
readers interested in tangential transfer, or in transfers 
within channels of complex cross-section, may refer to 
Quarmby and Quirk [9, lo] and Ramm and Johannsen 

Pll. 
1.2. Classijcation of models 

The most numerous group of analytical results are 
three classes based on Prandtl’s concept of the mixing 
length: 

(a) Jenkins’ [12] analysis and subsequent modifica- 
tions; 

(b) Deissler’s [13] analysis and developments of it; 
and 

(c) more varied models, generally combining features 
of the preceding and adopting a more detailed picture 
of the mixing. 

The remaining results are more heterogeneous; they 
range from simple empiricism to detailed statistical 
calculations. We can distinguish four groups: 

(d) formal analyses based on Reynolds momentum 
equations and allied relationships among correlation 
functions for the fluctuating quantities; 

(e) diffusivity models starting from formal expres- 
sions for the eddy diffusivity based on gradient-diffusion 
arguments or their generalization; 

(f) wall-layer models applicable to that particular 
flow; and 

(g) empirical formulae describing a limited body of 
data. 

Class (f) differs from the others in being defined by a 
field of application. Some of its models use “renewal- 
penetration” arguments for the sublayer, while others 
use mixing lengths “damped” in the manner of van 
Driest. 

2. MIXING-LENGTH MODELS WITH DIFFUSION 

2.1. General character 

These analyses seek to account for the exchange of 
momentum and heat (or convected matter) between the 
instantaneous surroundings and a lump of fluid which 
moves across gradients of velocity and temperature (or 
concentration). At the end of its journey the lump- 
almost always taken to be a sphere in detailed calcula- 
tions-is usually assumed to mix instantaneously with 
its new surroundings; the transfer is calculated using the 
terminal properties of the moving element. Clearly, this 
model is inconsistent, in a way that the original mixing- 
length argument is not, in that no account is taken of 
that fraction of the transferred property which is con- 
veyed only part way along the mixing length. However, 
since empirical constants are usually introduced at the 
end of the analysis, this inconsistency is of little 
practical importance. 

The assumption that Pr, = 1 is most radically in error 
for liquid-metal heat transfer, as a consequence of the 
very large molecular thermal diffusivities of liquid 
metals, which give Pr cc 1. Some workers interested in 
predicting heat transfer in these fluids have taken 
account of the transfer of heat from the laterally- 
moving fluid element, while neglecting the roughly 
analogous effect which small-scale diffusion has on 
momentum transfer. Accordingly, their results give a 
poor account of fluids with large and moderate values of 
Pr and SC. 

The simplest way of treating the entire range of 
molecular conductivities is to adopt identical expres- 
sions for the two eddy diffusivities; thus 

Pr, = f(e&)/f(a,Iv) or Pr &&/g(e,Iv) (2.1) 
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the structure of the functionsfand g depending on the he suggested i/u = 2, a value since adopted by other 
details of the model. These results indicate that workers. Tien also pointed out that the neglect of 

Pr, - 1 as Pr+1 (2.1) 

a prediction only very crudely in accord with experi- 

ment. This unrealistic behaviour follows from the use of 
identical transfer laws-typically, simple molecular 
diffusion-for momentum and heat transfers from the 

moving element, no account being taken of the pressure 
interactions which must influence the momentum 
transfer. For practical purposes this problem can be 
resolved by introducing a constant multiplier into 

equations (2.1). However, this expedient serves only to 
mask a fundamental failing of models of this kind. 

turbulent transfers to and from the moving sphere 
implies that 

Pr(o’i&) = Pr’12(u’&/v) c 1 (2.4) 

where 1. and & are the lengths (microscales) charac- 

terizing the smaller elements of the velocity and 
temperature fluctuations. Tienshowed that these condi- 

tions could not be satisfied in air (Pr h 1) and were 
only marginally satisfied in liquid metals (Pr cc 1). 

Rohsenow and Cohen [17] modified Jenkins’ result 
in a more fundamental way. They analysed test results 

to show that the effect of E,/V was small (actually, Pr, 

Table 1. Jenkins-type mixing-length models 

Authors Functional form 
Empirical 
constants Validity 

Jenkins [ 121 
Sleicher and Tribus [IS] 
Rohsenow and Cohen [17] 
Tien [ 161 
StnCchal [ 181 

0 All Pr 
,fw~) All Pr 

1 Pr cc 1 
1 All Pr 
1 Pr < 1 

2.2. Jenkins-type models: Table 1 

Jenkins [12] considered the motion of a spherical 

element of fluid across uniform velocity and tempera- 
ture gradients, taking the radius a to be equal to the 
mixing length 1 and the time of flight to be l/c’, with 

v’ the lateral fluctuation in velocity. He adopted an 
existing molecular-diffusion formula for a solid sphere 
to find the mean temperature on arrival and used a 
parallel result to predict the momentum transfer from 
the sphere. There are several ambiguities in Jenkins’ 

work, notably the use of an apparently incorrect form 

of the basic diffusion formula. Using the proper result 
(Carslaw and Jaeger [14], p. 235), we find that Jenkins’ 
analysis leads to 

1 1-(90/n’) f K4exp( -nWlv/a%‘) 

Pr, = 5 
“= 1 

1-(90/I?) ; n-4 

(2.2) 
exp( -n2rc21k-/a2c’) 

n= 1 

(The restriction to 1 = a has not yet been made.) The 
general character of the prediction is not altered by 

this modification to the solution, 
While Jenkins’ argument leaves no parameters that 

can beadjusted to match experiments, the other models 
listed in Table 1 are less rigid. Sleicher and Tribus 
[15] noted that Jenkins’ predictions were generally too 
high, and simply factored his formula: 

Pr,(Pr) = 
Pr,(air, experimental) 

Pr,(air, Jenkins) 

x Pr,(Pr, Jenkins). (2.3) 

Tien [16] revised Jenkins’ model in another way, 
arguing that a smaller sphere radius should be used; 

varied over the range 2 to 4 at least, with Pr essentially 

constant), and then sought a formula dependent only 
on the molecular Prandtl number. Thus 

P r; ’ = 27SPr 1 - (90/7c*) 5 
?I= 1 

x ne4 exp( - Cn2n2/Pr) 
1 

(2.5) 

with C = 0.0024. 

The model used by Mme. Senechal [ 181, as described 

by Huetz [7), is basically like Jenkins’, but specifies the 
boundary conditions on the moving sphere in a 
different way, and leaves the ratio a/l unspecified. As in 

Rohsenow and Cohen’s analysis, the role of the 
molecular viscosity is rejected, the turbulent Prandtl 
number being found to depend on a single parameter. 

2.3. Deissler-type models: Table 2 

In Deissler’s first attack on this problem [13], atten- 
tion is again fixed on a sphere moving normal to the 
mean flow. Being interested in very small molecular 
Prandtl numbers, he took account only of heat transfer 
from the moving element. The model is somewhat less 
explicit than Jenkins’ but, like it, takes the sphere 
radius to be proportional to the mixing length, and 
assumes molecular diffusion. With the heat-transfer 
coefficient assumed constant, integration of the equa- 
tion expressing the energy balance for the sphere leads 
to 

Pr; 1 = bPe[ 1 - exp( - l/bPe)] (2.6) 

with Pe a mean-flow P&let number, assumed propor- 
tional to that for the moving element. For pipe flow, 
Pe = CJOd/lc, and the empirical constant is assigned the 
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Table 2. Deissler-type mixing-length models 

Authors Functional form 
Empirical 
constants Validity 

Deissler [ 131 f (Pe) 1 Pr cc 1 
Lykoudis and Touloukian [19] f (Pr) 1 Pr << 1 
Aoki [20] f(Re2’25Pr) 1 Pr cc I 
Mizushina and Sasano [21] f(Pr, s&) 3 Pr < 1 
Mizushina et al. [23] fU+> Em/V, ail) 3 Pr < 1 
Wassel and Catton [24] f(Pr, sm/v) 3 All Pr 

Table 3. More varied mixing-length models 

Authors 
Empirical 

Functional form constants Validity 

Azer and Chao [25,26] 

Buleev [28] 
Dwyer [27] 
Tyldesley and Silver [30] 
Tyldesley [31] 
Ramm and Johannsen [ 1 l] 

f(Re, Pr, y/R) 

f(Re, Pr, etc.) 
f(Pr, s&) 
f (Pr) 
f(Pr, ?) 
f(Re, Pr, etc.) 

@6 < Pr i 50 
1+ 

Pr cc I 
5 All Pr 
2 Pr cc 1 
1 All Pr 
2 All Pr 
5+ All Pr 

value b = OGOO153. In this analysis the diffusion is 
assumed to take place through a layer of constant 
thickness, contrary to the nature of simple diffusive 
processes; it is this assumption that introduces the 
exponential function of equation (2.6) and the modifi- 
cations of it to be considered below. 

Deissler’s model differs fundamentally from Jenkins’ 
in taking the transfers to and from the sphere to be 
controlled by diffusive processes external to the moving 
element, rather than within it. As we shall see, this 
step allows the model-constructor greater freedom in 
specifying the transfer mechanisms and, in particular, 
gives him the ability to prescribe momentum transfer 
by a law different from that used for heat transfer. 

Lykoudis and Touloukian [19] modified Deissler’s 
analysis in several respects, in particular, by choosing 
the transfer time in such a way that the length scale 
of the motion did not influence the small-scale 
transfers. Their detailed result is 

Pr[ ’ = (6/7r2) f ne2 exp( -n*C/Pr) 
“=I 

with C = 0.01. 

(2.7) 

Aoki [20] followed Deissler’s analysis almost to the 
end, but then introduced a transfer law intended to 
account for small-scale turbulent mixing, obtaining 

Pr;’ = KRe0’45Pr0’2[1 - exp{ - l/(KRe0’45Pr0’2)}] (2.8) 

with the constant K = 0.014 for pipe flow. 
Mizushina and Sasano [21] also followed Deissler’s 

pattern, save that Ranz and Marshall’s [22] heat- 
transfer law for an isolated sphere in a uniform stream 
was introduced : 

Nu = 2 +0~6Re1/2Pr1’3. (2.9) 

The assumption that E,,,/v cc Re (for the sphere) led to 

Pr; ’ = (lv’/e&$[ 1 - exp( - l/f#~)] (2.10) 

with 

4 = C,(~,/v)Pr/{l +C2(c,/v)1i2Pr’,‘3), 

The value Iv’/E, = 1.5 was adopted, and Ci and C2 
were chosen to match experimental results. 

Mizushina et al. [23] returned to this problem, 
now keeping the ratio a/l explicit in their formulae. 
They specified it in different ways in the core (a/l 
constant) and in the wall layer [a/l cc (s,,,/v)) ““I, and 
thus obtained different formulae for Pr, in these two 
parts of the flow. 

The step of introducing an analogous variation for 
.s,,,/v was taken by Wassel and Catton [24]. They also 
retained the more widely interpretable em/r instead of 
the P&let number of equation (2.6), and introduced 
a few more adjustable constants: 

Pr; ’ = (C,Pr/C,) 
1 -exp{ - C2/(Pr cm/v)] 

1 -exp{ -C4/(E,IL’cF’ 
(2.11) 

The constants Ci to C4 were assigned the values 0.21, 
5250.20 and 5 in order to make the formula match 
experimental results for wall layers in air. 

2.4. More varied mixing-length models: Table 3 

The analytical results to be considered now were 
developed in the knowledge of some of the contribu- 
tions discussed above; typically, they adopt a more 
sophisticated, or at least more detailed picture of the 
turbulent activity. Some of these allow a variability in 
the distances and directions travelled by the moving 
fluid elements, and do not explicitly assume instan- 
taneous mixing with the terminal surroundings. Thus 
the defining feature of this category is, not the use of an 
immutable mixing length, but the introduction of a 
discrete element which gains or loses heat and 
momentum as it moves through the body of the fluid. 

In the work of Azer and Chao [25], experimental 
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values for pipe fiow were introduced for various 
characteristics of the turbulence, and a more detailed 
treatment was given to several aspects of the mixing 
process. However, the analysis is constrained by the 
assumption of a basic analogy between momentum and 
heat transfers, expressed in the mixin~length result 

& _ (u2 -4)Auz -uJ = 1 +K - WV2 -m 

t - (T2 - rG)/(T, - Ti) 1 +(u; -u$(uz -U;) 
(2 12) 

. 

where the subscripts 1 and 2 denote time-mean values 
at the initial and final positions, and the prime denotes 
the arrival values for the moving element, as modified 
by in-flight diffusion. Although their complete formulae 
are complicated, Azer and Chao gave simpler approxi- 
mations for pipe flow: 

pF 
r 
= 1 + .57f~/R)/(Re0’46Pr0’Js) 

1-F 13S~~/R)/~e”‘4s - 
(2.13) 

valid for Pr = 06 to 15, and 

Pr _ I+ 380f (y/R)/Pe*‘*’ 

’ - 1+ 135f b/R)/Re0’45 
(2.13) 

valid for liquid metals. In both cases, the variation 
across the pipe is given by 

.Kv/R) = expi -WW4). 

Azer [26] applied the same basicmodel to annulus flow. 
Morelimited aims were set by Dwyer [27]. He sought 

only to find an average value of the turbulent F’randtl 
number, in order to modify Lyon’s well-known heat- 
transfer law for liquid metals in pipes: 

Nu = 7 $0*025(Pe/Pr,)0‘8 (2.14) 

in which it had earlier been assumed that Pr, = 1. 
Dwyer assumed that the surface area of the moving 
fluid element was proportional to some power of em/v, 
that conduction to the element took place through a 
film of constant thickness, proportional to the mixing 
length, and that Stokes’law gave the drag of the moving 
element. Thus he obtained 

Pr; 1 = 1 - 1*82Pr-‘(~,,Jv)-“~ (2.15) 

where s,& is to be given its rnax~~ value within the 
flow, and the constants have been chosen to make 
equation (2.14) agree with heat-transfer measurements 
for pipe flow. This formula has the odd feature of 
becoming negative for small values of Pr and h/v. 
Although the formula (2.15) is that usually ascribed to 
him, Dwyer went on to develop some alternative 
predictions for Pr,, using transfer laws from the moving 
sphere with forms more appropriate to small-scale 
turbulence. 

The analysis of Buleev [28} involved an even more 
detailed specification of the small-scale transfers. He 
sought to account for the thr~-dimensionai character 
of the turbulence, so that the results might be applied 
in more general channel sections, not merely in round 
pipes. This intricate analysis is difficult to summarize, 
but the essential features are: establishing and inte- 
grating linear equations for the velocity and tempera- 
ture variations of a moving element; forming the 

transfer correlations using these solutions; integrating 
over space to find the net transfers; and finally 
determining the eddy diffusivities using these integrals. 

Ramm and Johannsen [ll] developed Buleev’s 
model further, finding it necessary to introduce a 
turbulence length scaledependent ondirection, in order 
to account for the large differences between normal and 
tangential diffusivities. 

Buleev mentions some earlier work by Voskresenskii 
and Turilina [29], implying that it is somewhat similar 
to Deissler’s [ 13 J analysis. 

Tyldesley and Silver [30] departed from the pattern 
set by earlier workers by considering a more general 
moving “entity”; in practice, it was taken to be an 
ellipsoid. They introduced distortion factors into the 
drag and transfer equations in order to allow for non- 
spherical forms, and also showed that the selection of 
a solid rather than a fluid element had a rather small 
effect on the results. Their procedures are, broadly 
speaking, those adopted by Buleev, although his treat- 
ment is more general in some respects. 

Although some aspects of their model are relatively 
sophisticated, the laws adopted by Tyldesley and Silver 
to represent transfers between their entities and the 
surroundings are the simplest mol~ular-diffusion 
results: Stokes’ law and Nu = 2, the latter strictly 
applicable to a sphere in still fluid [compare equation 
(2.9)]. Their prediction is 

Pr, = 2/3 +2(~/~‘)/9Pr (2.16) 

with $ and @‘distortion factors accounting for the effect 
of element shape on transfers of momentum and heat. 
In many of their results, Tyldesley and Silver set 
$‘/J/ = 1, appropriate to a sphere, but not too much in 
error for any “entity” that is not very elongated; this 
value is adopted in the results quoted below. 

To account for the possibility that the transfer from 
the moving element be accomplished by turbulence, 
Tyldesley and Silver applied the result (2.16) to the 
element itself: 

(Pr& = 2/3 + 2/9Pr, = (2 + 9Pr)/(3 + 9Pr). (2.17) 

Of course, if this operation is justified once, it can be 
justified again and again as the turbulence intensity and 
range of length scales increase. The results tend to 
(Pr,), = 0.9 for large n, for all values of Pr. 

The formulae (2.16,17) describe only the limiting 
cases of very weak and very intense turbulence, al- 
though these restricted results have the happy feature 
of being virtually independent of empirical inputs. 
Tyldesley [31] allowed for arbitrary intensity by 
replacing PF, on the right of equations (2.17) by the 
effective value 

This gave 

Pr, = (Ed + v)/(E~ + K). (2.18) 

I+ 1 -i- l/3& + (3/2)IPr/( 1 + 3Pr) 
Pr, = (2/3) ___ 

IS1 
(2.19) 

where I = (2/8 l)$Ni is a measure of intensity, NR being 
a Reynolds number characteristic. of the larger scales 
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of the turbulence. The result (2.19) has as its limits 
the formulae (2.16,17) when I -) 0 and co. 

A second generalization of Tyldesley [31] was the 
introduction of differing distortion factors for the three 
co-ordinate directions. Since there is evidence of elon- 
gatedstructuresin free turbulence, Tyldesley introduced 
values for the $‘s that are appropriate to a prolate 
spheroid whose length is some ten times its diameter, 
in order to obtain results applicable to free-turbulent 
flows. The resulting formula is rather like equation 
(2.19), but the modification to the coefficients leads to 
values of Pr, that are smaller by a factor of 0.75 
to 0.85. Thus Pr, = 0.6 to 0.9 is predicted for free 
turbulence, in rough agreement with experiment. 
Tyldesley went on to predict even lower values of Pr, 
(055 to 0.6) for highly intermittent free turbulence. 
However, Reynolds [8] has found that higher values 
(1.0 to 1.5) are found in reality, and this aspect of 
Tyldesley’s work does not seem to be successful. 

3. ALTERNATIVES TO THE MIXING-LENGTH MODEL 

The procedures to be discussed now are so varied 
that little can be said of them as a group, save that 
they differ from what have been called mixing-length 
models in not starting with a discussion of transfers to 
and from a distinct fluid element moving across 
gradients of velocity and temperature or concentration. 
However, the first two classes have in common with 
most mixing-length analyses the assumption that the 
mean-property gradients are uniform over distances 
comparable with significant lateral displacements of 
more-or-less coherent fluid masses. This assumption is 
ill-founded in most cases of practical interest, but it is 
possible that the introduction of empirical values will 
compensate for this deficiency. 

3.1. Formal analyses based on exact equations: Table 4 

The difhculties of a formal analysis of turbulent 
shear flow are so formidable that the only convincing 

Table 4. Formal analyses based on Reynolds equations 

Authors Functional form Restrictions 

Corrsin [33] 

Dunn and Reid [34] 

Deissler [35] 
Tyldesley [32] 

Hill [37] 

f(correlations) 

f (Pr) 

;tJr, :;Uld y) 
r, 

- 

Isotropy; 
large Re and Pe 
Isotropy; 
small Re and Pe 
Homogeneity; small Re 
Converted to 
mixing-length model 
Direct-interaction 
approximation 

In a final contribution Tyldesley [32] began by 
applying Fourier transformations to the equations of 
motion, and then developed his arguments with refer- 
ence to wave-number space. However, his results were 
interpreted in such a way that they became equivalent 
to those obtained earlier from the “entity” model, and 
it is appropriate to consider them here. In this new 
interpretation, the result (2.19) is replaced by 

Pr 
t 

= (2,3) vO/v+ 1+ 1/3fi+(1/3)(v0/W0/a0) 

v&J+ 1 
. (2.20) 

Here v. and a0 are diffusivities representing small- 
scale turbulent transfers between an entity and its 
surroundings. While Tyldesley held that the results 
(2.19,20) should be exactly equivalent, there is nothing 
in the development that demands that this be the case. 

The intensity parameter I = vo/v is presumably 
related to measurable quantities such as .s,,,/v and Re,,, 
but no explicit connection has been suggested. This is 
the significance of the functional form f(Pr, ?) given 
opposite Tyldesley’s work in Table 3. An extended 
account of Tyldesley and Silver’s work has been given 
since it has some interesting features, but the failure 
to define the measure of intensity does reduce the 
practical utility of the results. Lawn and Walker [30,31] 
have made a number of comments on this method of 
analysis. 

products of rigorous mathematical analysis relate to 
isotropic turbulence, just a few tentative steps having 
been taken towards cases of wider practical importance. 
Thus Corrsin [33] briefly examined transfers in shear 
flow, following a more detailed study of heat transfer 
in isotropic turbulence. He utilized the isotropic result 

I, = (2/Pr)“‘l (3.1) 

linking the microscales used earlier in equations (2.4), 
and obtained 

Pr, = (l/5) (R,/&s)2 (3.2) 

where R denotes a correlation coefficient. This result he 
supposed to be independent of the molecular Pr, but 
most of the evidence that has come to light since that 
time fails to justify this assumption. 

Dunn and Reid [34] discussed isotropic turbulence 
in the final period of decay, where the Reynolds and 
P&let numbers are very small, and triple correlations 
become negligible so that an exact analysis is possible. 
According to Deissler [35], their result for a linear 
gradient of mean temperature gives 

Pr; ’ = 2.05 &{I - (ST}. (3.3) 

The limiting values from this result are 

Pr, = 027,0.65 and 0*49/Pr for Pr + co, 1 and 0 (3.4) 

in accord with the empirical conclusions (1.5). 
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In extending Dunn and Reid’s work to include a 
linear variation of mean velocity, Deissler [3.5] also 
assumed triple correlation functions to be negligible. 
Consequently, the turbulence still decays, though its 
behaviour is now dependent on thedimensionIess strain 
parameters = f dU/dJj, with t the time during which the 
initially isotropic turbulence has been subjected to 
straining. In the presence of a mean velocity gradient, 
the truncation of the full equations by rejection of 
higher-order interactions is a very suspect procedure. 

Deissler’s predictions for thediffusivities are obtained 
by jntegrating wave-number spectra over the wave- 
number range, and no explicit formula for Pr, is given. 
The general character of the results is indicated in 
Table 5. where the values for s = 0 are obtained from 
equation (3.3). Although these results tend to a uniform 

Table 5. Deissfer’s predictions of Pr, for strained 
homogeneous turbulence 

~- 
s = f dU/dJ PI 

IO 1 0.01 

0 0,304 Oh50 49.8 
I 0.272 0.542 
3 0,240 0.425 15.2 
5 0,292 0.435 S-65 

IO 0.450 0600 3.75 
20 0.578 0.750 3.31 
50 0.666 0.908 3.54 

value (unity) when the Reynolds number of strain para- 
meter takes on a large value, the values calculated for 
Pr > 1 at first display the opposite tendency. To put 
this behaviour into perspective, we may make use of 
Deissler’s attempt to relate his strain parameter to 
conditions in pipe flows. He estimated that s = 
tdU/d~t _ ~05~7~~~~~. whence Rr, - 200 for s = 10. 
Thus it appears that the anomalous behaviour is con- 
fined to a strain regime which is not relevant to main- 
tained wall turbulence, for which Re,, > 2000. No such 
clear-cut conclusion can be drawn for free turbulence, 
since free shear layers become turbulent at much lower 
Reynolds numbers than do walf-bol~nded Aows. 

The problem of transfers in isotropic turbulence has 
also been considered by Kokorev [36]. 

Hill [37] has investigated the possibility of applying 
the direct-interaction approximation, developed by 
Kraichnan and others, to the calculation of eddy 

diffusivities. While it is not possible to give a formal 
justification of the direct-interaction hypotheses, com- 
parisons for simpler problems have shown some of its 
predictions to be more realistic than those given by 
other schemes of approximation, in particular. the 
“series method” used by Deissler [35]. Such com- 
parisons are made by Leslie [38]. While the computing 
requirements for direct-interaction calculations are 
very great, there is some hope of obtaining results 
for simple cases such as those dealt with by Dunn and 
Reid and by Deissfer; the former case would provide 
a check on the direct-interaction techniques. Hill has 
given a progress report on his attempts to carry out 
calculations of this kind; great difficulties were en- 
countered with the numerical procedures. 

3.2. D@usioity models: T&e 6 

These analyses start from formal expressions for the 
eddy diffusivities which incorporate, sometimes tacitty, 
the assumption that the turbulence is homogeneous 
over distances within which the mean properties change 
significantly or the assumption that the mean gradients 
are uniform for distances over which the fluctuations 
are signi~cantly correlated. 

In seeking to express the diffusivity of momentum in 
terms of measurable quantities, Tien [39] started from 
the results 

‘X 
& = c 

-1 
R&)dz = v’L, (3.5) 

0 

where 2 = vi2 is the intensity of lateral fluctuations, 
and L, and RL are the Lagrangian lateral length scale 
and velocity correlation coefficient. Since he did not see 
any reason to distinguish between the values of LL for 
the several transfer processes, Tien concluded that 
Pr, = 1. 

In their first attack on this problem, Bobkov er al. 
[40] started in much the same way as Tien, writing the 
thermal diffusivity as 

.i 

OT 
Eh = ;Jz Rr(z)dt = TTL (3.6) 

0 

where TL is the La~r~gi~ integral time scale. They 
related this to measurable Eulerian values through the 
postulates 

RL(7) = R,(7,6) = &(&O)R,(O, 7) 

= exp( - r/T,)exp( -6/L,) 

Table 6. Diffusivity models 

Authors 

Tien [39] 

Robkov i’f ut. [40] 

Validity Nature of model 
_-. - 

Pr- 1 Diffusivity integral without in-flight 
diffusion 

Pr << 1 Diffusivity integral without in-flight 
diffusion 

Bobkov and Ibragimov [41] 

Simpson er ul. [3] 

Pr c 10 Empirical extension 
_ Allowance for bulk convection by large 

“eddies” 
Reynolds [43] All Pr Diffusivity integral with in-flight 

diffusion 
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where TE and L, are Eulerian integral scales. When the 
spatial separation was expressed as 6 = O%!z, evalua- 
tion of the integral in equations (3.6) gave 

&h = ?TL = 
iFT, 

1 +O+h’TE/LE ’ 

In developing their arguments further, Bobkov and 
Ibragimov [41] noted that the diffusivity might better 
be expressed as 

Eh = 3 
s 

m M)f(K, 7) d7 (3.8) 
0 

but returned to their earlier postulate (3.6) in the 
absence of information regarding the transfer function 
J Subbotin et al. [42] extended this line of investigation 
to channels of complex cross-section, and presented a 
number of relevant experimental results. 

The developments of Reynolds [43] were intended to 
elucidate the effects of the molecular diffusivities and 
the overall level of turbulent activity, rather than to 
determine the way in which Pr, or SC, varied within a 
particular flow. The starting point was a particular form 
of equation (3.8), namely 

i Ep = D 
s 

a) 
RL(7) exp( - 6,7) dz. (3.9) 

0 

This was derived, in the manner of Schubauer and 
Tchen [44], from a postulated equation for the transfer 
of the property P between the moving element and its 
historical surroundings : 

dP/dt = -b,(P-F) (3.10) 

subject to the requirement that the mean gradient 
dP/dy changes only slowly withy. The assumption that 
RL(t) = exp( -7/TL) led to 

whence 

l+B,,TL 
Pr, = p. 

1+&T, 
(3.11) 

The time constant for the transfer process, l/6,, can 
be related to the defining parameters by applying 
equation(3.10) to a “roller” which conveys the property 
P across the gradient dP/dy. Taking the transfer from 
the roller to be accomplished by molecular diffusion, 
and taking TL - L/V to relate the time scale and the 
length and velocity scales of the roller, Reynolds 
obtained 

T,6, cc (Re v/Kp)-ll’ (3.12) 

where Kp is the molecular diffusivity of P. There 
follows 

Pr 
f 
= 1 +C,/Pe”’ 

1 + C2/Re’12 ’ 
(3.13) 

The values C, = 86 and C2 = 200 are suggested as 
representative of the core region in pipe flow. 

This analysis can be generalized in the manner of 
some of the mixing-length models. To provide an 

indication of variations across the flow, we can argue 
that UL/v cc E,/V rather than cc Re, and so obtain 

Pr 

f 
= 1 + Cd(Pr E,/VP~ 

1 +c,/(E,/v)1’2 . 
(3.14) 

To represent more varied transfer processes between 
the roller and its environment, we might introduce 
effective diffusivities : 

K, = v( 1 + C,Re”‘) 

Kh = ~(1 +C,Re1’2Pr1’3). 
(3.15) 

The particular forms are suggested by the drag and 
heat-transfer laws for a sphere. 

The formulae (3.13,14) give Pr, --* 1 as Re or 

Gil/V ---t co. This unrealistic behaviour can be avoided by 
introducing a non-diffusive (on the small scale) contri- 
bution into the momentum transfer; thus 

7T L 
E, = ___ - C,tl’T,. 

1+&T, 
(3.16) 

Taking C3 = 0 for the thermal diffusivity, we obtain 

Pr, = (1 +C1Pe-“2) 
1 

1 + C,Re-‘I2 
(3.17) 

The values CL = 100, C2 = 120 and C, = 0.15 are 
representative of the core of pipe flow, and give 
Pr,-+0.85 as Re+ co. As would be expected, the 
constants C1 and C2 are more nearly equal in this 
formulation. 

Another way of distinguishing between the mechan- 
isms of momentum and heat transfer was used by 
Simpson et al. [3] in analysing the outer part of a 
boundary layer. They followed Townsend’s [45] 
suggestion that heat transfer be represented as the sum 
of gradient-diffusion and bulk-convection terms (the 
latter representing the activity of the larger “eddies”), 
while momentum transfer be given by simple gradient 
diffusion. Thus the correlation between velocity and 
temperature fluctuations is 

-2 = E,,dT/dy = e,dTldy+1/,0 (3.18) 

with E, representing gradient diffusion of energy, and 
V, representing large-eddy convection. 

Simpson et al. supposed that E, = E, and took the 
convective element to be the product of typical 
fluctuations: 

v,e-Ke: (3.19) 

The effective convection velocity was supposed to vary 
linearly through the boundary layer: Vi - (L’L),y/6 with 
6 the thickness of the layer to V = 0.99V,. The 
temperature fluctuation was represented as 

0’ - ldT/dy (3.19) 

with 1 the mixing length. These postulates led to 

pr, = E” = Enl 
&h Em+(%b/6’ 

(3.20) 

This result is independent of Pr, and Pr, < 1, for the 
boundary layer, at least. The results obtained, for air 
and for @l <y/6 < 1, were nearly identical to those 
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given by Rotta’s [46] empirical formula, which will be length representation of the wall layer. His approach 
considered below. has been extended to the temperature distribution near 

Note that the modifications of the diffusivity a wall by Cebeci [51], who took the eddy diffusivity to 
expressed by equations (3.16,18) are fundamentally be given by 
different. The former provides a non-diffusive transfer 
within the turbulence, the latter a non-diffusive transfer 

i:,, = -a/(dT/dy) = I, I,,dC’;dJ 

by the turbulence. However, the effect of the restrictions with 
(3.19) is to restore the proposal (3.18) to the basic 
gradient-diffusion form, with z cc dT/djf, contrary to 

I, = K[l -exp( -y+;A +)] 

the original concept. While these two modifications 
and 

have the effect ofnudging the diffusivity ratio into better Ih = K’[l -exp(-y+(jPr)/B+)] 

agreement with experiment, neither gives a convincing The turbulent Prandtl number can now be calculated as 
account of the role of pressure interactions or of 
turbulent convection which cannot be represented as 1 -exp( -y+/A+) 

Prr = ‘ml’h = (K/K’) 1 _exp[_,,+(~Pr)lB+]’ (3.23) 
gradient diffusion. 

Table 7. Wall-layer models 

Authors 

Marchello and Toor [7] 
Taccoen [ 541 
Thomas [48,50] 
Blom [2] 
Cebeci [Sl, 531 
Na and Habib [52] 

Functional form Validity 
~- - 

All Pr 
.fPr,_r+) Pr CC 1 
.f(Pr, E,/v, 4’+ 1 Not Pr >> 1 
f(U’) All Pr 
.fU+,4.+) Pr- 1 
fPr,4‘*) All Pr 

3.3. Wall-layer models: Table 7 

One subclassification which can be distinguished is 
that of models that apply Higbie’s concept of diffusive 
penetration through a film, in this case the viscous 
sublayer, intermittently renewed by fluid from the 
region ofturbulent flow. Marchello and Toor [47] were 
not very successful in their analysis along these lines; 
they obtained results which differ from most other 
predictions in giving Pr, 3 1 for Pr 2 1, contrary to the 
experimental trends (1.5). 

Thomas [48] made a more successful application of 
the renewal-penetration model, basing his analysis on 
earlier work by Danckwerts and Hanratty. He took the 
near-wall temperature gradient to be 

dT+/dy+ = Prexp{ -(Pri_cs)‘!‘y’] (3.21) 

corresponding to the velocity gradient 

dU+/dy+ = exp{ -(&cl)1i2y+). 

The superscript + indicates that the usual 
scaling has been carried out (y’ = y/y,, 

(3.21) 

wall-layer 
etc.), and 

C~ = t,/(fpU;)is the friction coefficient at the wall. The 
effective Prandtl number is given by 

Pr, = (dT+/dy+)/(dU+/dy+) 

and the relationship (2.18) between Pr, and Pr, leads to 

Pr 
t 

= Pr+v/E, exp{ -(PrQcr)“‘y+) 

-G&y exp{ -(+cc/)‘!*y+} ’ 
(3.22) 

This line of argument was extended to a developing 
boundary layer by Thomas and Fan 3 [49] and to liquid 
metals by Thomas [SO]. 

Another distinct group of wall-layer analyses are 
those developed from van Driest’s damped mixing- 

In developing this model further, Na and Habib [52] 
set K’ = K, and treated B+ as a function of Pr, in order 
to deal with fluids other than air. Cebeci [53] showed 
their function B+(Pr) graphically, and also indicated 
how the various constants (K, K’, A+ and B+) depend 
upon Reynolds number. 

There remain a few studies of the wall region that 
do not fall into the classes considered above. Taccoen 
[54] has described the wall layer by dividing it into 
discontinuous segments, in the manner of von K&m&n. 
Thus a highly discontinuous function Pr, = f(y+, Pr) 
is defined by the variations U+ = f(y') and T+ = 
f(Pr y’). Another wall-layer result is reported by 
Wassel and Catton [24] are attributed to Blom : 

Pr, = 1 - 
x4/24 

e”-1-x-x2/2-x3/6 
(3.24) 

with x = KU+ and K = 0.4. This formula is supposed 
to apply for all values of Pr. 

In addition to the investigations identified in Table 7, 
Mizushina et al. [23] and Wassel and Catton [24] give 
special attention to the region adjacent to a fixed wall. 

3.4. Empirical formulae: Table 8 

We shall not consider the many investigations in 
which Pr, or SC, has been assigned a value independent 
of the molecular diffusivities and of position within a 
flow, a procedure most often applied when Pr,Sc _ 1 
and the variation in Pr,,Sc, is accordingly not large. 

Some workers, though aware of attempts to predict 
the dependence of the eddy-diffusivity ratio on mole- 
cular diffusivities and position within the flow, have 
rejected these analytical results, in view of the contra- 
dictions among the several models, between models and 
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Table 8. Empirical formulae 

Authors 

Rotta [46] 
Kunz and Yerazunis [55] 
Graber [S6] 
Quarrnby and Quirk [9] 

Functional form 

fW4 
f @m/K) 
f VW 
fb/R) 

Validity 

Prw 1 
Pr CC 1 
1000 > Pr > 0.7 
Pr>@7 

experiment, and oetween different experiments. Thus 
Kunz and Yerazunis [55] adopted 

Pr, = (2/3)exp{0~90/(a,,,/tc)0~64} (3.25) 

for pipe flow, accepting deviations +05 from the 
experimental values. Again, in view of the scatter in 
their measurements, Quarmby and Quirk [9, lo] felt 
that it was impossible to isolate the dependence of 
Prt, SC, on the molecular values and Reynolds number. 
However, they did find an important variation across 
the pipe, and represented it by 

Pr, = (1 +400-Y’R)-1. (3.26) 

This gives Pr, = 3 near the wall and Pr, N 1 in the 
core; the scatter around this result is 50.1 in the core 
and rather more in the wall layer. 

Rotta [46] considered the consequences of adopting 
a number of alternative variations of Pr, through 
boundary layers in air, including an expression that he 
found to represent the experiments of Ludwieg and of 
Johnson : 

Pr, = 09 -O.~(Y/S)~ (3.27) 

(Here 6 is the overall boundary-layer thickness.) In 
fact, the result (3.27) is usually quoted with the constants 
given the values 0.95 and O-45. The trend suggested is 
opposite to that of equation (3.26), the near-wall value 
being close to unity, while Pr, 1: ) near the edge. 
Looking at some of the models introduced earlier, we 
note that they too are in conflict regarding the changes 
in Pr, as the wall is approached; compare, for example, 
equations (2.11) (2.13), (3.23) and (3.24). This confusion 
reflects the contradictory nature of the experimental 
evidence. 

The last few results have purported to show how 
Pr, varies within a particular flow, but did not allow 
for any dependence on the molecular Prandtl number. 
At the other extreme, Grdber [56] took no account of 
position within the flow, but did allow for dependence 
on molecular diffusivities, through the formula 

Pr;’ = 0.91 +0.13Pr0’54s (3.28) 

applicable for 0.7 < Pr < 100. 

4 ASSESSMENT 

We now face the task of weighing up the advantages 
and disadvantages of the results introduced above. The 
assessment can be based on either practical or funda- 
mental considerations. The former are summed up in 
the questions : How successful is the model in describing 
experimental data or situations of practical interest? 

HUT Vol. 18, No. 9-E 

Is the result adaptable to varied flows, for instance, 
the wall layer, free turbulence, or axisymmetric flow? 
How easily can the result be modified when further 
data become available? How easily can it be derived 
and used? The first of these questions is the most 
important, but the variability of the evidence currently 
available prevents us from using it as anything more 
than a very coarse filter. This is particularly true of 
results for the wall region. 

Inmaking an assessment from the fundamental point 
of view we must bear in mind such questions as: What 
does the model tell us about turbulent transport 
processes? Does the development suggest fundamental 
experiments that might clarify the nature of these 
processes? Does the development make use of 
measurable quantities? Are the results for limiting 
cases (such as Pr --f 0, 1 and 03, y + 0 and Re + co) 
sensible? Here too the first question is perhaps the 
most important. But most of these investigations tell 
us nothing new about the small-scale transfer processes. 
Even the more modest final question provides little 
guidance, for we are by no means sure what the 
limiting behaviour should be. 

In view of the rather cursory discussion that has 
been possible in this paper, the following remarks are 
advanced tentatively, but a somewhat more detailed 
consideration has been given elsewhere [57]. 

4.1. Mixing-length models 

From the fundamental point of view, these are not 
successful: as indicated earlier, they tell us little about 
the primary transfer processes within the turbulence, 
while the model of mixing is so crude that it cannot 
be related directly to correlation and spectrum 
measurements. 

For practical purposes, we must favour those results 
that contain a number of adjustable constants, and 
whose form is generally realistic. On this basis it is 
suggested that the models of Mizushina et al., Wassel 
and Catton, Azer and Chao, and Buleev are those 
most suitable for application in engineering practice. 
Each has its strengths and failings. For example, 
Wassel and Catton’s result is easy to derive and use, 
but gives no guide as to the changes from one flow 
species to the next. On the other hand, Buleev’s 
derivation is necessarily complicated, but does provide, 
in principle at least, a means of dealing with varied 
boundary geometries. 

4.2. Alternative approaches 

The purely empirical results of Section 3.4 and Table 
8 offer neither practical nor fundamental advantages; 
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their chieffunction is to remind us how little confidence 
can be placed in any limited group of measurements. 

The wall-layer models considered in Section 3.3 and 

Table 7 should, if properly tuned with appropriate 
constants, give a reasonable picture of the wall region. 
But there is no substantial evidence that they are 
superior, even for that region, to the more flexible of 
the mixing-length models. The renewal-penetration 

models do have a fundamental advantage, however, 
in being related to a specific and not unrealistic 
picture of events in the viscous layer. 

The diffusivity models of Section 3.2 and Table 6 

have the desirable feature of being able to account for 
non-diffusive transfers within the turbulence, as in 

equations (3.16,18). They are rather easy to derive, 
provided that oneaccepts the basic integral for the eddy 
diffusivity, and can be invested with a number of 
adjustable parameters. On the whole, this starting point 

seems to retain the desirable features of the mixing- 
length approach, while being somewhat closer to 

reality, in that measurable quantities are considered. 
Finally, we turn to the formal analyses of Section 

3.1 and Table 4. Potentially, these can account for 
pressure interactions and for diffusion and convection 

within the turbulence. At present, they describe a very 
limited class of motions, but we might hope that these 
results will indicate the limiting behaviour to be 
expected in other cases. Dunn and Reid’s results (3.4) 

suggest that 

Pr, -+ finite constant for Pr >> 1 

Pr, x Pr-’ for Pr cc 1. 
(4.1) 

Deissler’s results, given in Table 5, suggest that 

Pr, --, finite constant for E,/v 2> 1. (4.2) 

Many of the models considered above do display 
these characteristics, for example, those of Jenkins, 
Deissler, Wassel and Catton, Mizushina et al., and 
Tyldesley. Others display the predicted behaviour when 
Pr,.z,/v >> 1, but depart from it in that 

Pr, zx Pr-” (with n < 1) for Pr cc 1. (4.3) 

For instance, the models of Aoki, Na and Habib, 
Reynolds, and Azer and Chao give n = 0.2, 0.5, 0.5, 
0.58, respectively. The results of Thomas, Blom, and 

Kunz and Yerazunis display even more varied limiting 
behaviour; such extreme predictions are almost 
certainly incorrect. However, it is difficult to know how 
seriously to take minor departures, such as (4.3), from 
the pattern of the formal results. It is quite possible 
that maintained turbulence differs fundamentally from 
the decaying homogeneous turbulence for which the 
results (4.1,2) are applicable. Indeed, Deissler’s results 
of Table 5 suggest that this is so. 

It need hardly be stressed that the formal analyses 
are ofgreat fundamental interest. Now we see that they 
have immediate practical application in providing 
criteria for assessing the structure of semi-empirical 
formulae. 

5. CONCLUSIONS 

There seems to be little point in devising further 
simplistic models of turbulent transport processes, in 

particular, those based on the mixing-length concept. 
A variety of functional forms is available, each with 
several adjustable constants, and with these it should 

be possible to represent experimental data with 
adequate precision. Many of the models display the 
samelimiting behaviour, and this suggests that approp- 
riate choices of constants will produce rather similar 
variations overall. 

To describe the flow near a wall, the form Pr, = 

f(Pr,&,,,/v) is almost certainly inadequate. The roles of 
intensity and of position within the flow must be 
separately accounted for, as in Pr, =f’(Pr,~,,,j~,y/y~) 

or fU'r,~,lv,ylR1 
Few attempts have been made to predict the marked 

differences between free turbulence and wall turbulence, 

and between plane and round flows, although Buleev 
and Tyldesley have taken some steps in this direction. 

At present, it seems to be necessary to devise a special 
law, or to select a special set of empirical constants, 
for each flow species. Separate treatment will be 
required for highly intermittent regions of free- 

turbulent flows and boundary layers, but no useful 
predictions are currently available. 

The vital problem of predicting the effect of pressure 

interactions on momentum transport has been avoided, 
save in those analyses that follow directly from 
Reynolds equations, and apply in the main to decaying 
turbulence. This is also true of the more general 

problem of accounting for turbulent mixing that is not 
adequately represented by gradient diffusion. Less 
restricted results from formal analysis would be very 
welcome, but it is not easy to be optimistic in view of 
the practical difficulties of computation and the funda- 
mental problem of achieving closure. 

While it seems unlikely that the purely analytical and 
purely empirical approaches will make rapid progress, 
thereare intermediate positions which offer more hope. 
The renewal-penetration models for the wall layer 

(Section 3.3) and the more widely applicable diffusivity 
models (Section 3.2) are based on fairly specific and 
realistic pictures of turbulent activity. Hence inter- 
mediate stages of these analyses can be tested against 

experiment, and progressive improvement is possible. 
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LA PREVISION DES NOMBRES DE PRANDTL ET DE SCHMIDT TURBULENTS 

R&me-L’article etudie plus de trente faCons de prhoir la relation entre les transferts turbulents de 
quantite de mouvement et dun contaminant passif tel que la chaleur ou une substance dissoute. Les 
modefes sont rkpartis en sept classes suivant la methode d’obtention et le champ d’application. Trois 
des classes comprennent des modifications du modele le plus simple de longueur de melange afin de 
tenir compte de la diffusion lots du mouvement lateral de l’ekment fluide qui est sense transporter les 
entitb transferees. Les quatre autres classes sont plus hkbogenes: analyses formelles basCs sur les 
equations de Reynolds; rbultats deduits d’expressions varihs des diffusivitb turbulentes; plusieurs 
genres de modeles applicables en particuher aux ecoulements parietaux; et des formules purement 
empiriques reprbentant des don&es limit&s. 

Une tentative a ete faite afin d’haluer I’utilite et les possibilitb du dheloppement de ces modties, a 
la fois d’un point de vue pratique, celui d’imaginer des formules pkises de transfert thermique et 
massique, et d’un point de vue fondamental, qui est de parvenir a la comprehension des mtkanismes reels 
du transfert. I1 y a une plethore de formules qui peuvent, moyennant un choix convenable des constantes 
empiriques, rep&enter les caracteres essentiels des don&s expbimentales. Cependant, seules les analyses 
formelles rendent compte de manihe cohbente des interactions de pression qui influencent le transfert 
de quantite de mouvement. Actuellement, les rbultats formels ne sont valables que dans le cas 
degentre d’une faible turbulence en dkroissance, bien qu’ils s’avbrent effectivement utiles pour suggQer 

le comportement limite des kCoulements plus gCnQaux. 

DIE VORAUSSAGE DER TURBULENTEN PRANDTL- UND SCHMIDT-ZAHLEN 

Zusammenfassung-Zur Berechnung der Beziehungen zwischen dem turbulenten Impuls-, Warme- und 
Stoffaustausch werden in dieser Arbeit mehr als dreigig Mijglichkeiten angegeben. Je nach Art der 
Herleitung oder des Anwendungsbereichs werden die Modelle in sieben Klassen unterteilt. Das einfachste 
Mischungsllngenmodell ist in drei Klassen enthalten; es beriicksichtigt die Diffusion wahrend der 
Querbewegung des Fluidelements. Die anderen vier Klassen sind unterschiedhcher: auf den Gleichungen 
von Reynolds basierende formale Berechnungen, Ergebnisse, die von verschiedenen Ausdriicken fur die 
Diffusion in Wirbeln abgeleitet wurden, einige Modelle, die besonders auf Grenzschichten an Wanden 
anwendbar sind und nur in begrenzten Bereichen giiltige empirische Formeln. 

Es wurde ein Versuch unternommen, die Niitzhchkeit und Anwendungsmijglichkeikt dieser Modelle 
zu bewerten, zum einen vom praktischen Standpunkt aus, urn genaue W&me- und Stofftransport- 
gleichungen zu erhalten und zum anderen vom grundsatzlichen Standpunkt aus, urn den wirklichen 
Ubertragungsmechanismus kennenzulernen. Durch passende Wahl von empirischen Konstanten ist es mit 
einer groI3en Anzahl von Gleichungen moglich, die Haupteigenschaften von experimentellen Daten 
darzustellen. Nur die formalen Ansiitze beriicksichtigen in fibereinstimmender Weise die Wechsel- 
wirkungen des Druckes, welche den Impulstransport beeinflussen. Gegenwiirtig sind Ergebnisse nur 
verfiigbar fur den entarteten Fall der schwachen, abnehmenden Turbulenz; gleichwohl erweisen sich die 
Ergebnisse als hilfreich, urn das Verhalten in allgemeineren Strijmungen naherungsweise anzugeben. 

PACqET TYPEiYJIEHTHblX YMCEJI I-lPAHflTJlfl M LUMMATA 

hllOTBWlIl - B CTaTbe aHaBH3HpymTCR 6onee TpHBUaTH MeTOROB paCYeTa 3aBHCHMOCTH MeXny 
Typ6yJIeHTHblM nepeHOCOM HMnyBbCa H nepeHOCOM naCCHBHOti npRMeCM THna TeMnepaTypbl HBH 
KOHUeHTpauHH BemeCTBa. MeTOnbl pa3neneHbI Ha CeMb KJIaCCOB B 3aBWCMMOCTH OT cnoco6a nOJIy- 
HeHHB K03+&iqHeHToB nepenoca o6nacru npHMeHeHHs pe3ynbTaToe pacHeTa. TIM Knacca conepXaT 
MOJViCjlHKaUPiHCaMOfi IIpOCTOti MOnenAqnMHbInyT~CMeureHHnnna yVeTa IIpOUeCCa Typ6yJleHTHOii 

na~i$yseki npe nonepeHHoM nmixemu 3neMenra ~A~~OCTH, sanarouterocn uocrfrenehl TpaHcnop- 
Ta6eJTbHOit Cy6cTaHUHH. GCTaJlbHble YeTblpe KJlaCCa IIBJlIIK)TCII 6onee pa3HOpOnHblMH: OHH BKJlmSa- 
H3T HccnenoBaHHs, 6a3HpymmHecn Ha CjlOpMaJlbHOM aHam3e nepekioca Ha OCHOBaHWll ypaBHeHllfi 

PeiiHOJIbnCa, npHMeHeHAH pa3IWiHblX Bb1pawteHAi.i L(JlP Typ6yJleHTHOfi TeMnepaTypOllpOBODHOCTP4, 

HCnOJlb30BaHHN pa3JlFiHblX MOneIlek NJaKOHOBN B IlpHCTeHHOii o6nacTn, a TBKXKC npUMeHf?HUU 
‘iMCT0 3MnHptf’ECKMXl$OpMyJI. o6o6maromHx O~paHA'ieHHble3KCllepFfMeHTaJlbHble~aHHbre. 
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CjIe.na~a nOllbITKa OUeHWTb He06XOnUMOCTb nepCIleKTHBHOCTIl JlanbHetilUefi pa3pa60TKIi 3THX 

MOnenet KaK B IIpaKTIiYeCKHX llenKX,HanpHMep NIR pa3pa60TKH HeKOTOpblX alleKBaTHblX COOTHO- 

IUeHBtt TeOpHH TeIInO- U MaCCOO6MeHa, TaK W i$yHAaMeHTanbHblX, HaIlpHMep LlnR BblRCHeHHR 

MeXaHU3MOB DepeHOCa. MMef2TCR MHOxeCTBO +OpMyn, C IIOMOUlblO KOTOpblX, IIpH COOTBeTCTBy- 

IOlIIeM l-IO&Ope 3MIIHfWiCCKliX KOHCTBHT, MOIKHO npx6nexeHHo OnHCblBaTb 3KCIleplWeHTanbHble 

JlaHHbIe. OnHaKO, TOnbKO l$OpManbHblfi KaYeCTBeHHblfi aHanH3 Il03BOJlReT yYeCTb B3aFiMOjleiiCTBAe 

nonz4naaneHssu CKO~OCTH, anusromee HanepeHocaMnynbca. B~ac~oau~eeape~n ~~ee~C1la~an~i3 

~pOU~COB~epeHOCaTOnbKO~nRCnyYaRcna6o8BblpO~Aalo~e~C~Typ6y~eHTHOCTII,XOTIl OH HMeeT 

OTHOLUeHHeCKOp~KIl~~eJIbHOMyCnyYa~CyUIeCTBOBaHH~ Typ6yneHTHOCTRBoo6LUe,YeM KpeaJlb- 

HblMTyp6yneHTHbIM IIOTOKPM. 


